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Pre* oundry ro'bleMS ftot Parabolic Equtions

Anti' Frtedman

fiM SLO. pro., bouzdary problem tarý ttie hea't equation have

been coradsfld for over- aL QelntUfl (forý reterences prior to

S9" as*e Brfl30in III)* In a few special oaises thi solution

have boon fou=d ezpliottly, but ,zist~iOce tbS "0rea for gene~ral

9R00st~rtd .tsnztl~fl about t~n 10011 .50* UTkw wil known

Q0,dM*4iR*Wtfl $Want problem conoernlug- the mfltilng of :10*

tenhete at the boundry vit& * certain. pn~scrfsd tompereture

vileoO~tfl*4by Rtbl"1n1ti E221 ff$) t241 (251 12031 (2-731

Decov 121 131 (4) 151 (aee alsto Datnotff [8). They Usmed ditteflilt

method's who$,* basic tnun &a be tound in their papers (223

Another Stolen probisn toe the h~oatin$ at, the boizdary

is 4lv0n In term at the flow of best ns con*ldored 'by Zvatw

[a),' ?Ureamkw (203, 41 buglas (0) n* KCImr [9. 11n1 t3he

104- two papaa t*1 proflas (nist"nee "d tnoqz etAO tow a4l
fizALA. tie) OsoWsit, we~ en shethw 'bo*tholo

aM Wta or aut t0oe O3- ton npvsztatteb

Vh apors at 1tovane r the Stotfl robinm an of lheuiwtiot

ntn.Actally 1* 41-d Mo ieai rcs ro to his a re

tim abutezstAAAh did o poEataliiiqne ) It



hand except for a few incomplete details Rubinstein £22] proved

existence and uniqueness, but only for small intervals of time.

r-a [251 he stated that he can prove existence and uniqueness

,or any interval of time with the aid of oertain lemnas on

sxperpabolil fwtlons,

A method to solve free bondary problems was developed

saysteeatically by Kolodner [18]. TlAs method was applied by

MrUanker 1201 to solve a Stefan problem mentioned above. It was

*arlter applied by Keller, Kolodner azd Ritger [141, Kolodner

t15.) 161 and Xojod•er and •Riter (171 to study the problem of

ovaporation and condensation of liquid drops*

In this papesr we refine the methOd of Rubinstein 122] and

apply it to, solve Stefan problew for a3l future times and the

problems of evaporation and condensation of drops for small

Lflterval0 Of time.

In Part i we are essentially comerned with the Stefan

pr-doi when the heating at the boundrt7 is given in tems of

thoe titeratie oald water is present already at the beginning.

E fI iwe f-owlate the main re sult. In # 3 we reduoe the
Q0gi34a problem to the problem of finding a Unique solution of

a oeartan nonllma* integral equation. In provin" this reduo.-

ton We use an aailiar7 lemo a proved ina f 2, In 0 4 we prove

tM •t ic-watew line is M oeaeasirng function in time. In

,5. •w prove t0e existenoce and uniqueness of the solution of the

iteara equatIo31w Our method Is a modiffcation of the method,
of siacoessive appwozi£at4.ons (both on v (t) and a(t)) used. by

Rubireatn (22] and i~s i•uh more suitable for t~ie pur'pose of

I."



continuation of the solution into the future, In 6,we prove

existenwo aaý uniqueness for all fzuture times. The decisive step

is an a priori estimte on the x-derivative of the solution

u(xt) defined for clt<t ; the bound being independent of t. In

4 7 we mention that all the previous results hold for General

parabolic equations with smooth eoeffi.ients, We conclude this

Section with a fev open questions.

In Part I1 we consider the problemis of evaporation and

o1ondensation or liquid drops, In § I we state the main results

which we proceed to desoribe, If the nxitiAl vapor density on the

Ssurfaceof the drop is equal to the saturation density then in

oease of condensation (ot~o) existence and uniqueness are asserted

for all future times and in case of condensation (a : ,o) only as

long as the radlus of the drop is not "too small". Here ct is 6

oertain physical quantity which• is assumed to be sufficiently
i

*%*11 in absolute value. If there is a Jurap from the initial

v-por density on the drop to the saturation density, then existence

is assrted as above but uniqueness is assarted only under the

"etra condition that th. drop does not start to grow "too fast".

We finally state that the radius a(t) o•v the drop in case of

oondenuaxion i rows at most l1re A # B•t1 i 2  where A, B are

appropriate onrwtants,

Th proof of the above results is ivezn in , 2-.5. In

91 the problem is reduced to solving a certain nonlinear integral

equation, This equation differs from the analogous equation of

Part I in the fact that it contains terms •.ihich havesa singularity

I, -



like t"I/2 at t = o. The main reason for dealing with that

equation (rather than trying to eliminate the singularities by

some integrations by parts) is that we prove (in •3) existence

and uniqueness in an interval whose length depends on ju(x,t)f

and not on Iu (x,t)j. TIie solution obtained however might have

a singularity like t"/ 2 at t

In 4 we prove existence and uniqueness for large time-

intervals, showing also that the above mentioned singularitiea

of the solution are removable (Lemma 2). In, j 5 we establish

the above mentioned a priori bound on e(t).

In Part III we consider the probla off dissolution of gas

bubble in liquid. This problem is similar to the one of. Part II

with one exception: The law of conservation of mass at the free

boundary leads to an ordinary differential equation which we

cannot solve explicitly. Thus me first derive certain estimates

on the solution of this equation without solving it explicitly
aand then we can proceed by t-e --- t-d ,of Part TI" The results

4re stated in Theorem 5. The results of Parte II, III can also

be OeXtended to general parabolic equation with. smooth -oefficients,

3 _4
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'' Lt.t~ -A. tohe ?a- r HesP.lO

Ini this Powt I wo haUl essentially be ooncefted, wit~h tho

following Stota type prolew10

Xr oor t > 0

z g (t) i~s tbo ftvoe boundary (for' Insabwio0, theo v~tez'-io* line)

:Owio to nt kcnown. and has to be fma~id together' with u~z,;i
~~~~~~~ I#±ne(.~,(.) (1,A), are the- Uusullr,11 4

whoru.s tho 444-It~o~2* oo*dAftou (1.5,) (tbe equation~ of beat

ba~~*uioe)~ -s~~iioioit fro * boundar x sm za(t).* Th..

u apt otsfzk0 0, tfrost her" ft- aot that tbe texpeva-

V* pars tbtit ux(xjt),# s(t) form a solution of

tb,4#-4* (i4l)..(1.s) for* I3 t 4c o (7ir 00) If lx

aU/a.Z ~~~ af o~'''U oo.e O tt>Osl ontimious

as t *4o z*4 b.# it a.(t) (4týcr~) Is Oc 1rimously dfferentiable



Oe main r'su:Lt of this Part I is the following theorem.
Tho. Assume-that f t) (0 < t < co ) and qý(x) (o < x c b)

are iontin--uo diTterentiable tun•tions, Then there x-sts
or*e jai .0a one Solu!tion U(xt)V s(t) 2L th (1.)-(1.5)

~~~ Fll1 Ac PgMh ý,zoz. the fungtion x gl(t) i's -wonotor

"Ise proof of Theorem I i 4iven in 2 4 2-6. In 2 2 we prove
San tl!" .1ma (strongerz' tha*n awa l stated and applied ft

183),.• • we prove that for any.possible solution s(t) is
m14otone 2nonde-reasing In t. It is al•o shown that if eIther

/
VWCý)* or f(t) * oIn aOfte al iiA erVa. 'o0< t< (~
ten 0(t) is a strIot!,y Inoreasing fuwtion of t. In ,4 we
•ioe, * orl4 PVroblem (1.1)-(I.8) to A problem of isolving
a oeitain noneaw in.t"r equation, In this proof we make use
or the lm pz'ovd $i *2I in •5 we prove existenoe and
v1aqu#U~s; of solution& for the norlineari Xntegral equation for a
Mall I t"al of tme t. FinMlly in #6 (Using the results of

f -3.4) we pjOve that the Soiuti.,0 can be oontinued, end uniquej.-
to l uture i~malo In # we, give 'vtrious gejrwrqaliZa'ions or

zhow i w1W 1.

iA.

_ _ _:- ( 0) to ~t t < O ueont 0 ILO0.''., dI" t

M(~ to s, t ý4 j)fti~t weL~s~~scn1to.Tn o
8,.

o(



wosL'n Wfl lflt provthat for sanytsj fhit)

t -

(2.0)
wt,

X iw+ 0, er"'+*4V 0,-4

ibww. A0 1# at oonotat tbdospesw of xvto, 6 UT toe soquol na

et~h 4e OT b appropristo oloasta"Its lndopodnt.r lotf zt, 5

t4

t
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To evaluate Idenote

Then

The brAeesi in the ee00nd e~pozie)It are bounded by

Sirl*& WS mi$Y $Mme t~hOt rigt Bide Oft the last liequgaaity Is

a Imalrttan It, Ve oon2.ude that the braelcots on the righit side

A(IXO8Ct)I + 1, a Wos,(T))

Smbstilatting in (2ii.v) we. ~tn thist

t A~x's ti A$/2

Irmas, in oxd~to eva~luato it la en'OU*I to evaluatt z3

a~nd notjng that moos (tko,, we got

(2.9 jN ýWxp{.o. *w}dz where =

4z,''

Z- (zoos (t

1/



Oo~bining the laist, r'esult with (2.98) and (245) azd using6

the Oftiniti.on I Ij+, It followa thAt

whiLe is uqIeuat to tba Oft Z~texit (9,0 P,

P~r'cw t~hr* boe ovoauationo~ I~ it also followis tbat

<- A7

Uvn pzr~ed (2.2) we prooeed to pro~vi that
t

40

ti4

With proo of 4 otA (22,(.1) 'Li)wepoc to zv

(s4) W 241 olos rm h

t4

V0

rs,~~ -I .I



-low

we claim that

S (29.5) + 2W'/PD(t)) O(S/2+ I.u.b I (t(C)I

Indee4, writing in (2.14) P(t) = (t)+((t)-.(t)) and using

(2i), (2.12) and (2.14), the proof of (2.15) follows*

We next observe that the function

16)t

0

sa*ti sfies

(2.1?)Sit)

Combining this remark with A.B15) we, get
(9.1eS) 6 )u1. I (L1%+L)+2ý/2/• iW)i <ko¢l1/2+ .uwb. If (t)'•¢Z)l

(2.18 (t1 o .ub _<)_t)

01noo the left side of (2.18) is independent of 6 we conclude,

on, tAkIng o-O that It is zero' and J the proof of the leIa is

So~p16etd.

ftppose U-(xt), O (t) fofmi a solution of the systei (r*I)*=

(I.5), By the %aximw principle 120] u(xt) is nonnegative for

O' js(t), t>0, Since uuo on x a (t), u < o and heno, b7 (1.5),
: •(t) E o. ?hi• proves• tha.t s(t) is rnomdeovoauing in t.

W* shal now pwove, •tha it either qP (x) • o or (I)~ o oin

soe 1nterva1 o~t< , then s (t) is strictly in-creasing in t•

-i-9



LIndee4 in the (oontrar oase thez'e exist two Points t' > t'"

nuch g~1 (t) a (ti'l tor All tv <~ t 15 t" Thoerortoze Py (1.05),t

o oxoo the straightse&%Ot enX = t) jtf<j 9 t ctoWO

wxmn zno-v us* the strons mituapinciple 1211 to show tha

~f~t ~o tor 0 44 x 4 a(t)* t > 0,0 Sluosuito(t),t) =o we can

poits(st1t) t ~bt t 1". his :Last oonoluslork fowwevr

io,~e tMO Wt > 6 for t~ t 4 V-' wbich isa woonrari-ationo

4'4

4. GLX The *Z )dW19
WU intwouo PAOn' +ucto Io thM( p*nOx

+ )Gxp t o ~ + N+ M



we rooeato iff1,X~t~8both $V~0o (4#2) With resPeet to

z ~X ar0& se W UsIl1g Lei . e, have

Hoer we Uzed the fact thWt the isor termn Of G Ise a "

twrotiofl Sines X+ a~t w o (icest snoao98

We proceed to evaluate 14017- 1 2,3, Denote by

th e=~ W tiote; bal ZS46 X 0* It aBi~tisfOb

OX sel We now bave

b

0 
0

t~sX~ (.4D 4~),(4.7)l we. obtsi1n on differentiSating~ (4.2)

vithi respeo$ to X. ixA takinxg ~~~)

2 f0 0 (0)+o)114O)(S((t4,vt; 0OL0) + 2 f5* M(IN~ W);ýt; I 10)da



wýiewog by (.)and (4.5),o

(4.9) .Ct) . -ej V(It Wct.
0

Wie bavo t~hs pr'oved th~t for overy solutionf u.,s or' the soyatem~

(io2)."(i.5) V (4efimid by (4.-3)) M~ist satisfy, the Intolgral

equAtIon (48) wilezre s~It) la dcfina4L by (4.9).

a *onzt-Irsous tolution of the Into-pral equatIon (4.8 whoro W(t

lis deflzod by (4,09). Wa Shall Prove that U(X~t)., q~t), (where

Ufz~t) is deft±wid by (4*21) wi thu 1. a iT ) rap~caod by-v (T)

f omR a Solutiort of tho sya-tam (1-.1,6 I5).

First of, aZll Ooe oaa exasia Verify ft ai)..(5) We now

&itfevntieto u (xlt) with ros. at- to; x and tak6 x-+a(t.*,

VAM*# 4"" I's Um prevri'Oa Otacoultions AD of a Mx/lx U,5

#44 the int~p,1 eqýUttion (4.80) we- find that U..l" (.t,.) t

~(2~$LV #n ft)ba. a41 -tbh roulawity properties in order to

foa toIlution in tho sense; of f' 1.'Thus It vezlaina to prove

To .p*v that,* us Axtogato Ortons ldantlt7 (with 0 and u)

wb'~xg th At. iVer. roproeatatt=~ tor u(zx~t) thus obtstinod with

(44R) wO oonb44. tftt

01.1* ~~ ~ ~ ~ ~ I thom(zt ~oi stz~* ~~ need(t, i ~t<r

Olt~ tends 4

V 0 Sf)M40 -,tV -"&Al



(by (4210) and the oontinruty of £(xst) in the whole strip

am& •') and tends to zero as x--*00 uniformly with respect

to t,, o_ t < 0- Hence,, b7 the maximum principlea. Y(X. t)=o

for a W X < 00 0 o o _< t <" a-

Applying Leorm I we now get

o� •(a Wt)t) (O<t<-r).

We have thus proved that the problem (l.I)-(1.5) is equim.

valent to the problem of finding a continuous solution to the
int'sa! equation (4.8It) is defined by (4.9). In what

follows we shall solve this nonlinear integral equation.

SEistenee d .. Uni 0. for 4 a Times

'In tVhia chapter we sh&U prove that the integral equation

(4.8) has a u-nique solution for o < t < cr, #" being a suff low

elently small nubert We denote by C. the Banach space of

funetions v(t) defined and continuous for o < t < o- with the

uniform norm, wealyIvll I=1 .u.b.Iv(t)I. We denote by C.M

tbo closed spbore 1 v tl M of radius 14 in C,,._ On the set C

we define a transaorlmtion w Tv in the following way:

b

(54.) t ,

-f '(t)N(a(t)*t;,lo)dt +2 $rL)GX(s(t),t;s(t),t)dT

0,o 0



where
t

We shmal prove a few properties of T.

52.1 T maps 00, Into itself. Frca (042) it follows that

(5.S Ist)- (T) _<(•-t).

In what follows we shall denote by B, appropriate positive oon,

atlnto dogen~nd!iu (and oontinuously so) only on b, We shall take

<r to satlsfy

ts,.4) 9K M"< b, cr < 1

so that,

With the aid of± ( •5* )" . ) we easil ftirA that

($. 0) IwII. - + 0,1 (to + r(o)+ !I)Q- + 02 iE(r .

M411*11 + 1

zid taking Vr to iatisafr, b•e4.a (8.4),
5.8) i(${o) + t(o) + IIbo+ Bg(4 Ii~i+ l)2r:L/ < l

wo ioonolu4 that 1ju fl < No that Is* T vaps Ocr into Itself*

U*Sig (St7)we oan replace the donlttong (5.4) by

(5.0) Ii - b# o <

--- •-- ---------- •. -- a .. .a..• . .. . .... . .•..



If S'(t) corresponds to vf(t) by (5.2), then we have the follow-

rng inequalities:
e SS (t s aS

Since it t • •V, jjv't - M we also have

Finally, taking 0- to satisfr (5I9)WO have

With the aid of (5.e1l), (5,1), (5.13) ve now prooeeeJ to prove

that for small C" T is a contractiono

We write

(5,14) w . Wt = VW + VW 9 V3 + V4

wh.er

(5.15) Vi 2 10(o).f,(o)J (,(t),t0,o)

b

V 2  
J(,(NsO),td,)

20

0

4

(5.l8)
V t& A~

. *V • xp{- e'Li}t•dt

SUsing the sean value thorem, (5%11) aM (5.13) we 0a1ly get

(. III19) • 1V1l1.• ' ,,e_)
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To estUmate Ve we first estimate

(&.520) V 0-4

We m•y sspMe that is (t) > a (t) =a4 divide the taltegral into

thb. partot:

bo #41 sa (t)
+, + Y, + y9 +

vero# It to, uudexeto4 that for Ia"tMOS If 4 t) <"b < e(t) then

the last~ intepal -406S tot 4pps go!d the -UP/Ps 04 a 1'( or

th. aseoo? ikutopral lo roplaced by U* Tio ostiai~te. X, wo use tht

ma ViI~u tboawtm -noting tbAt It 4s(t) < 6 W a~t)bbe

l]al

1y,'j s ,.,- Xd

*4*iý VI* *04 uAs* of (5.Z11Y

YO-an. bo *usmtlft4 z U, ~~Fnly

oo"Aulm the 0esti'W4mm Or theY, weso

Wo ea ,jiularly ostzimito ir. which in equal to thes

plat AM0 lft (j.2O )v wth 3, v"PlAoe by so #. We obtain.
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(5.13). We conclude that

-11

To estimate V4 we write

(.24)W = w1 + W2 + W3

wheres

t

tt (t'.sa' (s )e2

W525 =~ [v!(r) SvtlI(r•)i ep{- (-(414!( T[l-
w3 tý fvtt )3/2 4 1

t

'(5427) W ý'

U lr (5.1o), (5t-) we get.

(5.28) xp IT.B8J /

To esi t-,e Wel noIte that the, bracoits on the rlight side

W31)• •l)] .•t ..,.!11 . ...... T 3/2 44 T )
of(5,427) aee lt

!eznoe, ein• (s.l1) we) obtain

(1/2,)f _ _2) r ult

.. . . -i • # - : 3 $ : -IL - - /'- --.. .% ;. . . . . . . " .". 7 L ~ il''• • -. • - - - -

-i

(T < t
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To estimate W. we note that the second braces on the right

side of (5.27) are bounded by

4(t I j}I[s, (t)-s (t)1-1s'v(t)-s(Ot)] Is, (t)-sl:(T) 1+13s(t)-00()11

(15.30)

< 1 (t.- T)

If we take cr to satisfy

(5.31) M2(o < 1

then the right side of (5.30) is bounded by 1. We then conclude

that the brackets on the right side of (5.27) are bounded by

BIoM C (t- T ). Making use of this last remark and of (5.12) and

(5.31) we get t
.o(t.-I )/2d _< 2 1.

Combining the estimates (5.28), (5.29), (5.32) with (5.24)

we get
(S5.3) IVi _B BMc r"/2

Conblilng the estimates (5.19), (5.22), (5o23), (5.33) with

(5.14) we get

(5.*34) B1ot. .B (o) +(o) t + t1•: •+B I l M +B1/2

provided <- satlsfiLs (5.51). In view of (5.7), (5.31) becomes

(5035) (4I $t(11+1+%)• 2 " < I

Ualns (5.7) we concl~de that if - satisfies (5.35) and

(5b.) B[ n(o)÷f(o)) +B1IItI /2+B, 11 ÷ ýT is 1 (4 operato/2r<1

then T 13 a oontraotion operator on 0,.u
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3. Co. ometion of the oof

We have proved that if (r satisfies (5.8), (5.9), (5.35)

and (5.36) then T is a contraction on C .,M and maps 0CM into
that

itself It is then well known~there exists a unique fixed point

v(t) of T in Ccr in

Having proved the existence of a solution v(t) to the in-

tegral equation (4.8) (with s(t) defined by (4.9)) we proceed to

prove uniqueness. Suppose v'(t) o < t <(' (i <:5 ) is another

solution and replace in the considerations of 5.1, 5*2 M by

M= max(M, 1ub1vIv (t) I I)

Then instead of (r we get Cr' (a-' ' which satisfies the
that

inequalities which guarantee that T is a contraction andAT maps

4t', into itself@ Since v(t) and v'(t) are both fixed points

in C I,,M, of the transformation T we have v(t) =v'(t) (o<t<a-I').

Now let < <C be any number such that v(t)_ v'(t), o<t<o-I.

SThen v(or)--v,( cr) If we show that for some E >o v(t) V (t),
0o<t<cr 1 +E then the proof of the uniqueness is completed.

Let u(x,t), u'(xt) be the solutions of (1.1)-(1.5)

corresponding to v(t), v'(t) respectively. If we apply Green's

jI formula as in §4 we obtain integral equations for v(t) and v'(t)

analogous to (4.8) in the domains -t < and I

respectively and with p(l ) replaced by u( and u'(3 ,cr)

respectively. We recall that u(.,(Y') u' (,7 1). Proceeding

as before (in the case " -o) we conclude that v(t)• v(t') for

•i •Ic t < •I+ for some6•> o, We

, have thus completed the proof of existence and uniqueness of
.•,i• solutions for small times.

,/4

* *,
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6. Existence and Uniqatapti for All Tiram

We now apply the proof of 5 step by step, To show that
such a process can be carried out so as to obtain a solution

u(xt),s(t) (or v(t)) for all times we have to prove the follow-
ing statement: It the solution v(t) (or u(x,t), s(t)) existi and
_!Loun foquor o < t < tc then it exists and is uni.ue for

o < t < to+ -or some E > o,
0

We first prove existence. To do that we shall first prove

that v(t) (o < t < to) is a bounded function0  In this proof we
shall make use of the fact proved in ý3 that s(t) -s nondeoreas-ng

In to Thus, s(t) >.b. We shall also use the fact that v(t)=

"'-s~t o.

The method used to prove (4.8) can be used to prove that

v~~t) [ [uo~to t )f (to- 6 ]N (s (t ),v t; °, to" m

{1) + u g to- N )(S (t),t; P ,too- •d

t t
2 -(t)N(s(t),t;o, t)dr + 2 v(Z)Gx (a(t),t;s(r),T)a z

0 toI 4
=T

where S'> 0, t< to and Ti denotes the i-th term on the right
side of (6.1). Since v(t) < o we only have to find a lower bound

on v(t). Denoting

to-.b<t•<t

* ----- 
- -



we proceed to evaluate T4 .

t2-I1/2T4 v() s (t)-1 sC" exp{-(()sr)•

,i (6,o3)t

+. sVt)+s (S) (t (t+S(t) )2}d
.v() /2 T + •

ifnee s(t)-s(t) > o and vtj) < o we have

4 -(6.4) T4 >o. 7

Since s(t) + sC() > 2b we have

4 2

(6.5)

if

(6.6) 
1

We now fix • such that it satisfies (6.6). There exists a

constant B' (depending on 6, but not on t) such that

(6.7) IT1 + T2 + T431 < B' for all to-6 5t<to.

Combining (6.4), (6.5), (6.7) with (6.1) we conclude that

(6*8) V(t) > 1 4(t)-B f (tons < t < to).

Taking the g.•.b, of both sides of (6.8) when t _<tt' we easily

get
S "? t' (;,) > -:2B,

Sand the boundedness of v(t) (to-g < t < to) follows.

I

f4
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We now differentiate (4.2) with respect to x, and make use

of Lemma 1, (2.12), the boundedness of v(t) and (4.6), (4.7). We

then find that u (x,t) is a bounded function for o < x _s(t)

o < t < to0 u(x,t) is also bounded in this domain (by the maximum

principle).

From the inequalities (5.8), (5.9), (5.35), (5.36) which

restrict the length C7 of the time for which a solution was proved

to exist it is clear that if we proceed with the method of 65

but start from t = to-" upward, then the inequalities restricting

t- will be indee~ndent of 6 Thus-. if we start with • sutfi-

olently small we shall get a solution V(t) for to-. <t<t +L for

some E > o. This solution coincides with v(t) for to-S <t<to,

sJn. We 11su"-d uniqu... .. fo- t a to0

To prove that there exists only one solution v(t) for

o < t < to+E we can use a reasoning similar to the one used in

53. Details will be omitted.

7a Generalizations

7.1, A weaker definition of a solution. In 1 we defined a

solution of (I.l)-(1.5) as a pair of functions u(xt), s(t) which

satisfy the equations (l.1)-(1.5) and certain differentiability

properties. Among these differentiabillty conditions only one may

seem to be unnatural, nanely, that u (x,t) is continuous on x=o.

We shall now prove that this condition is superfluous, that is,

if ft(t) to continuously differentiable and if u(x, t) is

S!Utionot (1.1), (102) • ux (x, t) iS continuous near and. up_

tO xo.0

-- - ~ b
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Introducing Green's function

4x; 1)= -I exp{- (x+4ka- . )2

(7.1)V t -1. exp{- (-x+4kc- }Li 2Trr1 2 (t?)1 /2  tT

in the rectangle o < x < 2a, o < la < t < X we have the following

representation formula for u (x, t):

2a~ t

u (X,t) u( u(P')K (x,,t;1,P)cid + (T [4t~K (x t;,i d T

(7.2)
t

- (u(2a,t ••K(x,t; ,Z )J dt.

The proof of (7.2) follows by noting that the right side of (7.2)

is a solution of the heat equation with the same boundary values

as u(x,t). We now differentiate (7.2) with respect to x, perform

in the second integral integration by parts (compare with (4.6))

and then let x---•o; the assertion then easily follows.

¶ 7.2. General parabolic e uations. Theorem 1 can be generalized

to parabolic equations

(77.3) a(x,,t)u, + b(x,t)u + o(x,t)u U t

provided c(x,t) _< o and the functions

are Halder continuous for o < x < , t _ o.

4/
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Indeed we have only to construct Green's function in the

domain x > o, t > o and then proceed as in the special case of

the heat equation. To construct Green's function we apply the

roethod of [13]. We first extend the coefficients of (7.3) into

the whole strip t > o by defining

&(-x) = a(x), c(-x) = c(x) for x > o

b(-x) -b(x) for x > o.

Then we can construct a fundamental solution r (x,t;.,t ) (by

9 ]) which will be continuous for x , o < < co, - < x < o•4 d

continuoutioy differentilable 44- o<r < o < X < *o

a13d o < I <oo, -o < x < o. We take for Green's function the

function

r' (x, t; ot r•) (-.x. t; 5,Z)

. gA ener Stefan oblem. We shall consider the case where

the temperature of the ice is not constantly zero and is kept

under eontrol at x =e > b. We then have the following system

(7*4) W a for o < x < s(t), t > o

a, 2 ~2-aT'( 2 2j for S(t) <X<0

(7.o6) U(O,t) = f(t) fl(t) > o for t > o

(7.7) u1 (x,o) = 1(x), v,(x) > o for o < x < b, 4,(b)=o (b > o)

(7.8) u 2 (x,o) q2(x), * 2 (x) < o for b < x < ca, 2(b) = o (c > b)

(7.9) u2 (o,t) = 2 (t), f2 (t) < o for t > o
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(7.10) Ul(S(t),t) = u 2 (s(t),t) -o for t > o, s(o) =b

du1 (s(t),t) + u2 (t))

(7.11) s(t) =-k D .... .. P + 2 (. W t) (k > 01 k > o)

With the aid of Green's functions G1 for (7.4) (in the domain

x > o, t > 0) and G2 for (7.5) (in the domain x < c, t > o) we

caen reduce the problem (7g4)- (7J1) to the problem of solving a

system of two nonlinear integral equations which we symbolically

w-xite in the form

(7.12) v,(t) = I(s(t), vl(t), v2 (t)) (i = 1,2)

'..ere s (t) is defined by
t t

(7.13) s(t) = -ki vl(t)dT + k22 j v 2 ()dT 4-b.

00

Using the method of • 5-6 we then can prove that the

s~stem. (7,4)-(7.ll) has a solution uI(X.t), u 2 (x,t), s(t) for

a.2l values of t as long as the curve x = s(t) does not intersect

t~be line x c. The curve x = s(t) increases monotonically in t.

The previous method of proving Theorem I can also be modified

t-o solve the system (I.I)-(I*5) with (1.2) replaced by

(102') U (ot) (t), f(t) < o for t > o

amd to solve the system (7.4)-(7.ll) with (7,3) replaced by

au1 (ot)
�7f W=O(t), f (t) < o for t > o

or with (7.9) replaced by
au(c,t)

01 .,. f2(t), f(t) _> o for t > oe

7 4o Soompe, problemsfo From the contractive character of the

t' amf~or~uation T which appears in the proof of Theox..nu 1 it

i.

,lF
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follows that the solution v(t) (and hence u(x,t), s(t)) can be

calculated by successive approximations for a small range of time.

Using this remark one can easily show that the solution changes

continuously with the data f, g. We raise the following question:

It f'>f, >' > T and s', s are the ice-water curves for the

corresponding problems, is s' (t) > s (t)? In a few particular

cases this question is answered by the affirmative, however we

do not know whether the answer is yes for any f, q, ft, V'. A

similar question can be asked for other Stefan problems.

The case b = o was excluded from our considerations. In

that case Rubinstein (23] proved existence for small intervals of

time under some additional restrictions on f. It remains to

prove existence without these restrictions. Furthermore, the

question of uniqueness is still open. We can prove very easily

(using the law of conservation of energy, which is obtained by

integrating the heat equation) that if u, s and u', s' are two

solutions, then s(t) and s'(t) must intersect each other infinite

number of times in any interval o < t < E (E > o). In this

proof we only assume that f(t) is a continuous function and

therefore this result contains the result of [26].
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Part II: Evaooration or Condensation of a Licuid Droo

il. Statement of the Main Result

A liquid in the pre.ence of an undersaturated mixture containir

its o,.n vapor will evaporate, while if the iixture is super-

saturated the vapor will condense. Assume that we have a

3-dimensional drop and that in the process of evaporation or

condensation the drop will remain soherical due to some extraneous

mechanisra such as the surface tension and that the saturation

density g is independent of the radius of the drop. Assume also

that in the case of condensation, no new drops are created. Let

f denote the density of the drop. "ie further assume that the

initial density of the vapor is a functicn C (X) of x, where x

denotes the distance from the center of the drop, and that

Co 0ltm Co(N) (X •ic) exists.

Denoting by D the coefficient o-0 diffusion and making the

substitutions

X-+ x, t -+ , c(x,t) -z(t) )= c(x,t)
2rg 

"-C00

-where c(x,t) is the vapor density at the point (xt), we get for

z(x,t) the following systea of equations (see also (18]):

1.1) = Zt for a(t) < X < t > 0

_ 117) z(xo) = Wf (x) for x > s(o) = b (b > o)

11.3) z(s(t), t) = 1 for t > o

(1.4) a zX (a(t), t) = s(t) for t > o
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where s(t) is tae radius of the drop and

,9 W g , 0 x: '
0

In what follows we shall need to assume the follovying additional

conditions on z(xt) at infinity:

xz(x,t) and 6 [xz(x,t)] are bounded as x - ,(1.5) e

uniformly with respect to t in finite intervals.

Thus ue shall have to assume that x W(z) and • [x 9 (x) ] satisfy

the same boundedness conditions, This means that co (x) tends to

its limit o0 "sufficiently fast". We shall also assume below that

j(X) S 1. This means that

if a(> o (or o 0< s) then co (x) S g,

and similarly

if COc o (or eo > g) then co(X) W g. (Note that

C0 > -1.)

The first ease is the case of an imdersaturated mixture and the

second case correspords to a supersaturated mixture. It is thus

seen that the assumption W (x) 1 1 is natural,

Using the maximum prinoiple (21] we easily conclude that

SX(s(t),t) 1 o. Therefore, b; (1.4), if C > o then i(t) I o and

the drop decreases (evaporation), while ifc < o then i(t) > o and

the drop brows (condensation). As in Part I we can prove that if

Vl(x)ý1 then s(t) is strictly monotone in t.
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Denoting u(x,t) xz (xt) tihe system (1.1) - (1.5) takes the

form

(1.6) U ut for s(t) < x < •, t >o

1.7) u(x,o) =-f(x) for b < x < ro (e(x) = s(o)t(x)< s(o

(1.8) u(s(t),t) = s(t) for t < o

(1.•9) c-ux(s(t), t) = s(t) ;(t) +d. fo r t > o

(1.i0) u(x,t) and ux(x,t) are bounded as x -+ 00

uniformly with respect to t in finite intervals.

Definition. A pair of functions u(xt), s(t) is called a solution

of. the system (1.6) - (I.10) for t < ( (6 <-,4 if they satisfy

these equations, if Uxx, ut are continuously differentiable for

s(t) < X< ., o < t < 6e if ux is continuously differentiable for

s(t) < x <o', o < t < r), if u is continuous for s(t) I x

o < t <( and s(o) < x < (X t = o and *(b) _< r ma Inf u <

lir sup u < s(o) as (x,t) - (b,o), if s(t) is continuous for

o < t <6 and, finally, if i(t) is continuous for o < t < 6- and

1lra tl/2i(t) exists (or lim t 1 / 2 uX (s(t),t) exists) as t - o.

If .9 (b) = b then we shall also demand that i(t) is continuous

at t = o and that u(xt) is continuous at (bo).

We shall need the following assu.ption on .e(x):

(•) The functions((x)) W (x)eare continuous and bounded for

b < x <cw-and j f(x)Idxexist3.
S-b

'I}

- -- .. a- -
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'.a can now formulate the main result of this Part II,
Theorem 2. Asoume that W (x) satisfies the condition ( t).

(i) IZf_ b) b and G< o and satisfies (3.50) then there exists

a unique solution u(xt), s(t) to thsystem (1.6)-(1.,0) defined

for all o < t < xo. Furthermore,

(1011) s(t) A + Btl/2 (01 t <cc.)

SA, B are* constants deponding oni on cA, b,,ý. (ii) If

e(b) = b a_.•.>o and satIsfies (3,50) then there exists a solution

u(x, t)) as lon as the radi.s R = slt) satisfies (4.8), (4.7).

Th-_e soutiosi dgeter&mineA uniquely. (iii) If c(b) < b then the

abot rese bf (I), (ii)) about existence remain true. The

ogIutM1n is determilned uniauely if tie make the additional condition

(3.&4) (° 0 £12 by s).

The proof of Theorem 2 is given in • • 2-5. In J 2 we trans-

form the problem into a problem of solving a nonlinear integral

equation. In §3 we solve the integral equation for small time-

intervals by a method different in sore impiortant respects from

the method of Part I. In 44 we repeat step by step the process

of 43 and prove (using Leima 2 and (1.11) that this process can

be continued so as to obtain the assertions of Theorem 2. Finally,

in •5 we prove the Inequality (1.11).

2 The Integr I I aIi

Suppose u(xt), s(t) form a solution of the system (1.6)-(l.lo)

. ._: • -- .:
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Using Green's identity with u(x,t) and

(2.01) G(x,¢t; ,,T) 1T2 exp .(t-.) I
2e/(t ( 4r.(t..J

in the domain s( c) < x , <T < t - and using (196), (1.7),

(1,8), (1.10), then letting -> o, ve obtain

00 tu X, t) G ( •x, t; 0) od G,• (x , tl,; a•r,•,1
b o

t
(2. 2) G (x, t; s(- ),T) ux(S (T),T) dl?.

0 /

Denote 0,

(2.3) v(t) = Ux (s(t),t)

The x-derivative of the second integral on the right side of

(2.2) is equal to

t; tf
at(xst; a('), s( d=- -- G(x t; s(1),r) s(T-)

0 0
t

+ G(x~t; 3(" ,V)s(T • d•- G, (x, t; .9( -) r) (<A v(r) -i) d
0 t6

do '6

where 7,'e made use of (1.9). Differentiating (2.2) with respect to

x and maklinG use of (2.4) and (1.9) ve obtain, on letting x -o s(t)+.

arnd asing Lemma 1,
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(l+•)v(t) = .-2bG(s(t),t; b,o) +04+ 2 G (S(t),t; { ,o)d( )
b

0 0

t

0
t.02( a -Jo °x(s(t) t;S( )r ) v )d '.

If we integrate (1.9) and make use of (2.3) we find that

(t 1/2

(2.6) 9(t) 2 rb2 - 2c4d(t o

We have thus proved that if u(xt), s(t) form a solution of
the system (1.8) - (1.10) for o < t <6- then v(t) (defined by

(2.3)) is a tolution of the nonlinear integral equation (2.5)

(with s(t) defined by (2.6)) for o <* t < 6" and tl/ 2 v(t) is a

continuous function for o < t <4. Conversely (as in Part I) one

can show that if v(t) is a solution of (2.5) (with s(t) defined

by (2.6)) for o < t <6, and if tl/ 2 v(t) is continuous for o < t <

then u(xt), s(t)j -orm a solution of (1,6) - (1.10) where u. is

defined by (2.2) with ux(s(t),t) replaced by v(t).

The reason why we did not perform integration by parts in the

third term on thie right side of (2.5) is that we 1,ish to define

M and 6" depending on f( •) and not on ( * The reason for that

last wish is that the method of Part I to find an a priori bound on

v(t) or Uxt(x,t) fails in the pre3ent situation, and if we want to
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conti.nue the solution to large J.ntervals of tine we have to find
1. indepenaent o- - ( ).

Xloiwever, the third ter.i on tVa right side o:f (2.5) (as well

as the firist terin) does not behave regularly at t = o. It behaves

essentially lil:e t' 1 / 2 .e therefore define

(2.7) "(t) = t 1 / 2 v(t)

and transform the integral equation (2.5) into an integral equation

in V(t).

3 L ;Ž.istence and Uniqueness f'or Small Times

Consider the transformation w = defined as follows:

1l+c4) i(t)=-2bt 1/2 G(s(t),t;bpo) +,:t 1/2+

+2 ft1/2Gx(s(t) ,t; ý ,o) e( ) d;
b

t
+ 2c t 1 / 2 CIs(t),t;s(r), *T)-d ) C

(3.1) 0 t

-2 4A J t /2Gls s(t), t; a( p ,• l2(: d r_

1. 0
S-2(I- )t 1/2 G(s(t),9t; s(( ) )-7V d

'0

2 1/2
(3g2) s(t) = b - 2 (t -d

:,•" 0

I

_ _. 

-
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This transformation is defined on the Banach space. C. of functior

"F(t) contininum for o < t <r and with the uniform norm

II II -l.u.b. I7(t)I . Denoting by OTM the subspace I1 V I_ M

we shall prove that f'or some )ositive 1 and 0- maps a , into

itself and is a contraction.

3.1 T maps C~.M into itself. If we choosedsuch that

(3.3) 21cI'+ 41I y1/2M b2

then on using (3.2) and the 'nequality I! M II_ Mwe get

'ie shall also need the following inequality:

(3.5) au(t) - s(T )I _-/

provided

(3.6) 71/2 c M.

In what follows we shall assume that (3.6) holds. The proof of

(3.5) follows from

s(t) - s(8 ) = I, )d.-l = I d A

t2_0% dll A_•• + 21_K (t-T

and i

Je (t/2 2-trl/2) 2 (t-r)
7-
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where we made use of (3.4).

With the aid of (3.4), (3.5) it is now easy to estimate

I� •1 *We have

(3. +g •y) II / I + l -5 l5 + 2 +6- + Tb

(397)
+) M 6 1/2+ 12 12-,,)M

+i 112b '7 1/2 b

We define

(3.8) M=2Ab +lfl1/, 2
1 /"2 ( 1 + :)

and assume that :. satisfies

(3.9)@ 481/2 2 b2 (o< ,<1)
.n48 (b + IIb,1II /) _ 9o

for some . If 5- satisfies

1/2 4 ý-2 M •1/2 8 M 1-/2 (100?/b-(3.910) . 12+ 6 + +Sr 'ýT 1/91

then it follows from (3.7) and (3.8), (3.9) that fII II < N, that is,

Smaps aCM into itself.

3,2,. T is a contraction. In what follows we shall denote by

A. appropriate universal constants. Let W = , = 1 and

denote

(3911) -T-o-=-
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Since

(3.12) iI V I_ M, II VO I
we find as in 3.1 that

(3*13) b ab bt 3 t

(3014) t12j~ ------ B- 2 , - (t)I ~mmik

(1 (3.15) !,€t)- t2 ) <_ 1 (t- .), Is°(t)" (T.I_ b(t- 1)

where x (t) is defined by (3.2) with a a replaced by so' lo

In proving (3.13) we make use of (3,3) and in proving (3.14),(3.15)

we make use also of (3.6).

Next we have

8s2 (t)-s 2 (t)l 2t C, I , - )Xd _4C da T

Henc e,

(•,16)18(t).8ot~ 0_ (01 ti2

We shall also need the inequality

To .rop) ;(3t7) w filt)s (_ to c

To prove (3.17) we first use (3.2) to conclude that

(3.10) js(t);(t)-W So 0 a(t)l t 1/2Vt -(~l•



M-38-

INext, usinG (3.14) and (3.16) ,e get

• ~~41 OL I M 11•I•t/28t1(t)l Ist-So b

(3.19) 2

b2

Combining (3.18), (3.19) and using (3.13) we conclude that

(t(t)(t)I ( < (+ 16 C 1) - /

where in the last inequality we made use of (3.3).

We now proceed to estimate d - W-. We write

(3020) (1+00) (w-W) v
0i

where

V1  -.2bt1/2 [G(z(t),t;bo) - G(s 0 (t),t;bo)J

v"tzl 1/2 ),, G(s(t),vt; ý,,o)- " G(so0(t),st; 0) •(ý)d

b

1/ 1/2

V -- G(s(s(t),)t;s( 1r7[ d(•,V4=.. tI 2"

000

"t G (a I (t) t; o(T Y I d ) t

- - -



t

_.2=c% f J/2- FG(sct),t;,•r),r) t. t;.L-8 r
0Vo5r =- tj/2

V6=(I <:'. ) v ("IT"

0
-G(S (t)st;sc()t tl2(r)ulC

a (tV'_ (r)"00 ao(tt o(r)t) I-

To estirntze V1 we use the xwan value theorem and (3e16). We

set

r 1 2 D zl/ I

S~~~(5.21) I v1! <_ 2e 1---1016• < I1 •

To estimate V2 we write V2 = V2 ' + V"where

V G(a0t9 t;!I(t)

b

0S

U Tin8 (3.18) we easily get

(3.22) 2'I , EI

r.re

Toetmt 2w rt 2 V1+If hr
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To estimate V2 " we use the technique used in estimating V2 '

in Part I, ý 5. ', divide the integral of V2 " into three parts,

namely,

*~ t) COO~ -f

(5.23) -V2" = + +DI + J + =+ 3

b b S(t) a(t)
ii:hare without loss of aenerality .we assumed that b<slt)<&olM.

The estimation of S2 Is immediate. Indeed,

(3.24) is21 < Ist.s(t)1 2  1 C.L2 M
-I t 1 '/t < 32 •E

Here we made use of the inequalities

1
ino(t)-41 _! Iso(t)-s(t)l, I G(x, t; so) _

and of (3.16).

To estimate S3 we use the mean value theorem and the inequaliti

I V2k=x 2 -C (0._22

where s(t) c a < ao(t). We get after some calculations

(3.25) Is31 a r'10(,II*IIE.
To estimate SI we write in the integrand of 3

a oCt) -ý = s0(t) - 8(t)] + [a (t) - ý).

We then obtain two integrals, The one that oorresponds to

1s(t) -(] can be estimated as 83, The seoond integral is bounded by
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Oc

)LG(s(t),t; , ,o) + G((s (t), ,) y

b

Combining these last estimates with (3.25), (3.24) and (3.23) we

get

(3,26) IV' il <32 (A 2 M~ym + (16 2+ O

Combining (5.26) with (3.22) we conclude that

(3.27) V2 <•3•2 O. 2 + 35 mA.

To estimate V3 we write V3 = V3 ' + V311 whore

t

20 t 1/2 [G(s(t)ot;a( )r~ (t) 1t3 C T)

0

" =2J t1/2 G(s(t),t; a(r), 1 1 ) d T
0I0

To estimate V3 ' consider first the *Xpression

(a (t)- M(S T) 2 -'(at) '("C)) 2 ]

(3•28) F IS - exp - .

The braces are bounded, by

(3.29) 1 T [I )lo t)-slt)l+!u o )-a() T )-8o )1

24 4X2 ME

U b
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here we made use of (3.15), (3.16). Dor later purposes we shall

assume that O$. satisfies

(3.30) 48 .... i 2

b

Using (3.29) and the inequality 6 _ 2M we then conclude that

(3,131) IF1 E• 1/2 24 1! •• (

b2

Substituting (3.31) into V3 ' we get

(3.32) 1V3 'I = 210c)1 1 t1/ 2 G(s(t),t;s( r),l-)•Z)dl d <AL-

0

To estimate V " we first note that

(r '77 r) 0  b
0bb

Substituting (3.33) into V3 I we get

(3034) k2p 2~ 3/2

Combining (3.34) with (3.32) we conclude that

(3.35) 1 V3 1 :S A, + AM-3 2 6 3

Vie proceed to estimate V5.0 We write V5 = V5 ' + V5 " where

4
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t

V5, - -2• ( tlI 2 FG(s(t),t;s(T- ), -)-G(s(t),t;%a(r) s)
52 0

V51  -2d! f t1 /2 G0(aot),tlSo(t)sr,') r~- " sTT-I d7r

0

We can estimate V5' by the method ve used to estimate V3 '. Using

(3.28), (3.31) we get

b

To eatimate V"t we first note on using (3.13) and (3.33) that

(393+7) + 16 24L I1

Substituting (3.37) in V5" and using (3.3) we obtain

(3.) IV 5"1 :1 A 4'4i (1 + b) C- 4 #

Combining (3.36) with (3.33) and using (3.30) we get

(5.3Q) iv5 l <I -c A, (1 + b) _ g ./2

To estiaste V6 we vrite

(3.40) V8 = (1-r) (V6 0 + v6 + V6 ")
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where s
0 1/ 1 (Fv- dTV6 tftl/-7

0

t

0 _/

v 0 (-T, )

1/2

Using (3.15) we easily (et

To estimato V6 we divide it into two integrals

t t

U sing (3.16 ) we get

Us1n the iman value tVweorem v nd (3.17) we got

j 1
(3443) lotI 1, MJb
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Combinins (3.44), (3.43) with (3.42) we find that

(3945) iV6, L- ý6./ 10f Ll

To complete the estimation of V6 it remains to estimate V6 ".

Using (3.15) and the inequality (3.31) ve easily find that

(3.46) IV6 It I 212
7T b

Combhinin (3.46), (3.45), (3.41) •ith (3.40) we conclude that

(3.47) IV61 1_ .•'26• + 240 H3-(1-) 00
b

It finally remains to estimate V4. From the slailariity betweer.

the expressions V. and V6 one can without any difficulty do*rive the

following inequality:

Combinixg (3 04C), (3.47), (3 *39) , (3 *35) v (3 *27) (3 021) viith

(3.20) ve o •t

(3.49)

S+ (2 6 lTl~ + 240 (1- a)/2

while A is an iDpropriate continuou function of bc* o 111%nlir

!kA
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recall that in proving (3.49) we assumed thatd. satisfies (3.30).

3.3 Conclusion, It remains to chooseck in such a way that

(3.9) and (3.30) will be satisfied and such that 7 is a contraction.

'le remark here that the. previous estimates are not very sharp and

can easily be iprproved. However, we decided to sacrifice a precise

evaluation of . for the sake of simplicity in the calculations.

Proceeding with this :,oint of view we shall now prove that if

(3.50) Ic <- i *c ci 200 , '** bJ < 0
b 2 T

then T maps C M into itself and is a contraction.

Indeed usins the definition of M in (3.8) we easily find that

(3.51)

and, in particular, (3.30) holds. Uaing (3.51) and (3.50) we alan

find that
(3.52) 1I 1; 3 1/2

I-. ,T AI

Thus if v satisfies (in addition to (3.3), (3.6), (3.10))

A o 1/2. _+_

than 7 is a contraction,

The condition (3.1) for some LO< is also easily verified on usinS

the first and last inequalities of (3.50).

Having proved that Y maps C•,M into itself and is a

contraction we conclude that there exists a function 7(t) Cn C

such that V = T!s v(t) = t'1/27(t) is then a solution of the

integral equation (2.5).
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If v (t) •s another solution of the integral equation (2.5)

&,rA if •o(t) tl/ vo(t) satisfies

(3.53) li 1o(t)I < M
too

then; 0 (t)= (t) for o t <c where • is sufficiently small.0

Using the definition (3.8) of M and (1.9), it follows that if

ve(t) is such that

S(3.54) t/lx ot Ml < kl 41
it-so 0 + COL 1 *-b

then uo(xt) .u(x,t), so(t)•s(t) for o < t 4_ , where u 0 , so

1s the solution of (1.6) - (1.10) corresponding to vo. We have

thus completed the dicussion of the existence and uniqueness of

solutions for small tiAe-intervals.

4. ftiftoees e Md Ltouneo for jLa~o Tie IntervalsII

As i!ready remarked in ý 2 the method used in Part I to prove

existence and uniqueness for large intervals of time fails in the

present case since we cannot find an appropriate a priori bound on

ux(xt) as in Part I. !I* shall therefore use a different method

based on the inequalities derived in • 3 and which involves an

4 a priori bound on u(xt).

We first discuss the problem of uniqueness. Suppose first

that *e(b) = b and prforn integration by parts on the third

integral on the right side of (2.5). We easily find that the sum

of the first three terms on the right side of (2.5) is equal to

b
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Thus the right side of, (2.5) includes only terms which behave

regularly at t = o. A comparison of the integral equation (2.5)

with the corresponding integral equation for v(t) in Part I shows

that the methods and results of Part I 4 5 remain valid with slight

changes. Hence, there exists a unique solution for sm-all intervals

, of time- rovided .*>-l. By a solution in this context we mean that

it satisfies the system ot equations (1.6) - (1.10) and all the

regularity properties mentioned in ýl. (thus, i(t) is continuous

at t = o and u(xt) is continuous at (b,o)).

As in Part I tue can also prove that the uniqueness of

solutions for any interval of time follows from the uniqueness of

solutions for sriall intervals of times. Thus, if *(b) = b then

there exists at most= one solution (in the sense of ýl) whereas

if A(b) / b and two solutions, coincide for some t =o > o

then they coincide in the whole t-interval of their existence,

We proceed to discuss the question of existence of solutions

for large intervals of time, We shall need a certain result which

we state as a lemma.

Larua 2. If *,(b) = b and (t) satisf i~sV a f or o <t<T
then v(t) r t- 1i/2(t) satisfies (2.5) and Is continuous for o < t <

Proof. As was proved in S3 if v (t) is another solution of (2.5)

which satisfies (3.53), then v(t) = vt) for all sufficiently

small t. Now, as was mentioned above, if .- (b) = b there exists

a solution vo(t) of (2.5) continuous also at t = o and it

ovldentll satisfies (3.53. Hence, for or auff i-
I. oeuer1y .mfl v( t) _•vo( t) (0 < t < •) . This proves the
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continuity of v(t) at t = o and the proof of the lemma is thereby

eomplet6d.

Supose now that we have constructed a solution for all

o < t and assume that
0

(4,2) o < R 1=lim as(t) < rx.

0

Further assume ( compare with (3.50))that

(4.3) urn sup 1 u(X,t)I <~'t-$to

(404) 1Lli sup ( x~t)I] 20

From the results of 3 it follows that there exists a positive

number 6 independent of to such that we can construct a solution

T(t) to the integral equation d : defined by (3.1) but with

o, bs( ) replaced by T, s(T), u(ý ,T), and that ;(t) exists

fort " t < T+ .+Since u(s(t),T) = s(T), we can use Lemma 2

to conclude that v(t) = (t-'T)' 1/21 (t) is continuous at t = V.

Prom the uniqueness results proved above it follows (as in Part I)

that the v(t) Just constructed coincides with the v(t) whose

ezistence was originally assumed for all o < t < to in their common

interval of existence. Since S Is independent of to, we have thus

proved that the solution v(t) (or u(x,t), e(t)) can be continued

above to to the interval o < t - to + • ' as long as (4.2), (4.3),

(4.4) a&eo satisfied*

If • o then s(t) increases in t. Condition (4.2) then means
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t hat (s(t) remains bounded for bounded times. A quantitative

result which includes this statement will be proved in 5 5. It

thus remains to consider the conditions (4.3), (4.4).

If .A< o then, by the maximum principle,

(4.5) lu(xt)l _ max (s(t), f1,sj )

Substituting (4,5) into (4.3), (4.4) and noting that s(t) > b we

obtain the conditions

which coincide vvith the conditions (3.50).

If c4> o we Get the conditions

(4.6) R >. 200 O max (b, 1P 1
(4.7) R 2 > 150 o, max (b 2,ilr .

We have thus completed the proof of existence and uniqueness of

solutions.

Aelmwk. Although the bounds on Ot can be improved, they are

already quite satisfactory from the point of view of physics.

Consider for illustration, the case of condensation oL <o and let

W o. Then (3.50) reduces to UcA [ < 1/200, or (using the

definition of o )

Take the case of water-steam, Then = 1 and if the temperature is

below 14000 then 8 < 1.96/10. Thus (4.8) roughly states that

the density %o of the supersaturated vapor is not 1 arger than two
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and a half tiaes the saturation density g& If howiever this

condition is violatod now drops will be created too fast and the

system (1.6) - (1,10) might not represent %ny more a reasonable

approximation to the physical situation.

5 An a Priort Bound on stt) for- < o.

In this chapter we shall comrnete the proof of Theorem 2 by

proving that if a solution u(xt), s(t) is defined for o < t < to

then there exist constants A, B depending only on ck, b, I1pII such
that for o < t < t

(5.1) s(t) I A + Bt 1/2

Only in this chapter we make use of the assumption that

(5,2) f I (x) I dx is finite.

b
We first remark that for every t < to

5 13 Ia stip I U (X, t) SII4

This follows by differentiating (2.2) with respect to x and then

oarryinc out intorration by parts in the second integral.

It we integrate the heat equation (1.6) over the domain

s(U) < • K, o < r < t and make use of (1.8), (1.9), we get
t .Kf Ju(Kr dTMt + at1 2 2 u(x,t) dx

o s(t)
(6.4)

+ f st) ~r) d - d
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We proceed to estimate

K

(5.5) 1 Iu(xt)t dx (H H tl/ 2 )

where H is a constant to be determined later, Using the integral

representation (2.2) of u(xt) with ux replaced according to (1.9)

and noting that s(t) a_(t), x- s(t7) x - s(t) t H, we get

2 Trf1/2 1< f f exp .(- - dxj dg

b
t -s2 a

+s(t) fJm4 exp& d'(~+m  djdx
s(t)+H 06)

(5.6) ri

ex (A-, .t),) d .a

+ )1/2 47P L(t- rjJt(t)+H '

+ )1,/2" exp 4t

d 2

4

1=1

iihere M denotes the i-th term on the right side of (5.6). In

what follows we shall denote by C. appropriate positive constants
o

depending on b, ot ard %9(x).

It

A2•

i%
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Substituting, p x-.g lit1 2 in the interior integral of M

and using (5.1) t,!e get

(5*7)

To estimate R2 we substitute ft x - s(t) and note that

/PZ 6 We obtain

t 2 2
a ic(t)f[ Pf GZP{ i~m r}J 7

H o

cC s(t) t exp -

Substituting p/t 1 / 2 and notinS that i/t 12 = a0 we get, on

taking H 10,

(5.8) C3 s (t) tl/2 f i *P -Oa r7 c4t-/2 (t)

In a similar way we get

(5.9) M3 _! c5t*

To estimate M4 we first perform integration by parts and

thus obtain

t,c. A. (. t) OX dX't) dx + CIF

"K4 6a2t 1 (t- .)/ x 5(t- r" Y T
o ()+H f }

Substituting 4P = X-r(t) we get

00

2l
ln4 7
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Substituting y = /tI/2 and takinrg Ho to be such that
/

(5.10) O 1 exp- dy < 4|dml "

0

we get 1 8I"-•)2 (t) + C 7015.z) M4 -•(41 C.

Combining (5.11), (j.9), (5.8), (5.7) with (5.6), we get

(5.12) 21i1/2 I < 9C + 0 5t + C tl/2s(t) + ( 1 1 )s 2(t)

We now note that by the maximura pririciple Iu(x,t)I _

s(t)+H

(5.13) f lu(x,t)Idx < Holll=t/ + Botl/2s(t).

The inequalities (5.12), (5.13) give the desired estimate

on the first integral on the right side of (5.4). The second

integral on the right side of (5.4) is equal to

--2(t 1 2

Using these results in (5.4), then taring X o- and using (5.3)

we get the inequality

* (5.14) a2 0 Co + Cat, + C 1 t/2 2(t)

from which (5.1) follows.

Ramrk.L From the above proof it follows that A, B depend only

4 na.,.,n (5 2on = b, oA, IIfII, !IlflI an the integral (5.2).

/,/



Poraula (5.1) is p]ysically quite satisfactory since it was

experisintally verified that s(t)i(t) approximates a fixed nwber

for large tims,

Configijng Rf~ki. Theorem 2 can be oeneralised to second order

parabolio equations with smoth coefficients as in Part I. It
can also be generallsed to system with (1,8) replaced by a more

general equation of the form u(s(t),t) = h(s(t)) where h Is a

SIven function satisfying appropriate conditions,

* - ~ - .

4



-56-

TWI lIND Disso'utoni Gas B bble in Li I

++JS $ 41ga" t o eit
1. Stjea~ntOL the Resul

We shall denote every formula (nmm) of Part II by II(n.m)*
Lot s(t) be the radius of a gas bubble submerged in a liquid
and let c(xt) denote the concentration of the gas dissolved in
the liquidi where x is th, distanoe from the center of the drop.
If the effects of the surface tension are taken into consideration

and if the concentration of the gas on the boundary of the

bubble is 1 (which we may assum) then s(t) and u(x,t) a xo(xt)

satisfy the following system of equations (compare 18]J):

(.)= ut for s(t) c x < too t>o

(1.2) u(.xo) -W(x) for x.*(o) - b (b>o)

(1,0) U(S(t),t) (1k)s(t)+kb for t~o

(.) uG(,(t),t). (s(t)+ib) i(t) + ab(mE*.m + for t>o.

'Here k. So6 arOe constants and ko, 3> O , o>-I, and p(x)/b Is the

siven concentration of the gas at two, Por simplicity we shall
assial in the proof of Theorem 3 below that kI 1, howveor all the

Sconsiderations remain true fzr any k4  The system (1.1) O (1,.)•'• educog to the system 11(],,6) II(l+9) it kumm~o. Besid, the

I

47 +
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system (ll)-(1.4) we shall make the following condition on u:

u(xot) and U,(xt) remain bounded as x-• v uniformly

with respect to t in finit, intervals.

We shall say that u(xt), s(t) form a solution to the

system (1.1)-(lj5) if they satisfy these oquations and if, in

addition, tUy satisfy the regularity properties mentioned in

the definition of II 4i.

(1) 4e *(b) b ~ ~satisfies (2,03), hZ ft is a-0rta

MOiti!e OghRtWit JI nDSn only _on ]too% it kot 3-C UO.

Mort slimb A MIiSae slution u'(x,,*t), a(t) aW to the srZl m (1.1-

(lfj) 1A n..nrvj3d I e/ L.n er, o< t <6 fr which tR = N(t) satisflief

(2432),

Ii) f Iy(b) 4 b thnteaoe *fsertion abouat exiatenae still

ho-Aa. I " solution is dete.ignIZ1b k4dditlonal

Real Can be taWOn Indepe6.ently or km for mall ka (for

i•ttae. k <_ 1, a < 1) and tb.4 it is of order of aagnitude of

a few hundreds.

With G defined by 11(2.,*1) we bav the followins representation

for us
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u(x t) -f G(xt; , o)p( ) d•
b

(21C) -f . (x,t; (t),C) [(1-k)s(t) + kbj dt
0

- G• (x p t; a Ly), u" )s UM j, T ) d 77.

Def ins

(2.3) v(t) ux (s(t),t).

IX we differentiate the second term on the right side of (9.1)

with respect to x, we get

-1 Gxx(xt; s(r), t) [(l-k)s(r) + kbj d"

t- . d
7"••-• G(xt; s(t),S)J [(1-k)s(t) + kb df

G- (x,t; s(rlor) C[l-k) s(r) + I•b .(Z) 3d

(2.4)
= -bG(xt;bpo)-(1l-k) I G(xt; a((), -) a() dF

0

Gx (xt; ,t),l7) [(1 -k) sti) + kbj a (r) d(.

Differentiating (2.1) wi~th respect to x, using (2.4) and (1.4),

then letting x - s(t) + 0 and using Lemma 1, we get

4

,t*



-- .

-59-

jv(t) (t; 0,f d -bGot)too)

-(z-k) (t os(t),t,*B(r , Y. .) t•ovU

0

+ k dC

(2.. Sjt-+(b " bist)k+ 1-k +

0 1O(e(t) ,t 1(L ) ,ZT) ?)kj (1l-k) s( r )+k " 8(" L b4r)+r
0 •

t

and s(O) *bb

Conversely one can show that if s(t) ii defined by (1.4) with

vX enad u(o) = b and it v(t) (o'ctcd) is a <•ontfnJou solution
of (2O5) and lia ti/ 2 v(t) exists (as t -o), then the u(x,t)

dofined by (2.1) bith u( replaced by v. fors toioether with s(t)

a solution to the systeo (1,1) - (1.5). It thus remains te;

*on,1,e1.r the integral equation (2.5).

Denoting the right side of (2.5) by 1/2 Tv we conclude that

v is a fixed point of tho transformation w = Tv. Defining

M(t) 1/ tiV(t) M t = tl/gW(t)

At/

- - - . - - ____ __-/
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this transformation takes the form W T V. We want to apply the

methods of Part II to the present case. To do that, we have to

prove some inequalities on s(t). 1ýje state then in a few lemmas.

The first lamina is an analogue to the inequality II (3.4)

whioh holds 1-r all 6- satisfying 11(3.3).

Lemmj. Asum _that II l.u.b.I V(t)I1.91 and let s(t) bLe

defined b7 (1.4) with ux=v an -sT'o)=b. Ifd satisfien

1/2 b 2

(2.6) 1aid'+ ÷ alM -/C b-

then

(2.7) b M t ?- for o-te 6.

Proof. Introducing the functions

(2.8) ,(t) a s(t) .mb , y(t) a '(t)1z

(1.4) (with uxmv) and th. condition sao) = b reduce to

Y~)+2akb 2c&

(2) (T(t))1/2-mb t1/ VMt -2a(l'k),

(2.9)

y(o) = (l.m)2 b2 .

A Unique solution exists for all t (ot•_) as long as

(y(t)) -/2mb remains positive. Por :<3o sufficiently small we

have
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1(210) b < (y(t))1/2 mb <_• -bŽ if o<t< t

Denoting

(2.1) ,t 2 .kb

(y(t) )1/2-Oab

we then have

S(2o12) ! (M 1! 41al k.

Integrating both sides of (2.9) and usiu•g (2.12) we got

(2.13) ly(t) - (1,+) 2b2 1_ 41Ia t + 41 al lt1/2

It follows, on using (2.10), that

(y(t))1/2+(Ia)b

itt

,b2
(2.1•;)4 aloe- + 41 al!It l/2 ' ".

We have thus proved that (2.10) iili.

'C 121A1 oxb ifOl!E

provQided satisfies (2.15). A simple araument about continuation

now shows that (2,16) remins, valid for all oct<•6 if C satisfies

I
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(2.6) Using the definitions (2,C) tho proof of the lemma is

completed.

The next le~mna establishes an inequality analogous to

11(3.5).

L4mra 4t Assuz.. that Mi • < M and let s(t) be defined by (1.4)

with ux re olaced by v and s(o) = b. If d' satisfies (2.6) and if

(2.17) 4M" 1/2< 1
then

(2.18) Is(t)-lt)f_ . (t-7) for o_<Tt<•
t1/2 b

Proo.. Usine (1.4) we have /'

[--

+b(t) - ) k J ("-b dd,4

r
'UsngLem&a 3 we get

where we made use of (2.17).

With the aid of Lemnas 3, 4 we can proceed to prove that for

some T" M m Y aps 0 into itself. The final inequality is

.!(2.19) II ;II < + 2II,•,It + 41'tI+2IclIM + l2 (i+2 1~). 4•I .. .+ B•/2

CAI

t2

b M fl/2
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where 3 is an appiropriate function dependinL only on A, 11, b

(b $ o).
We next turn to the proof7 that r ia a contraction. The method

Of Part II can be a--,)lied if we )rove ap-Dropriate analogues of the

inequalitie3 11(3.16), 11(3.17). !'1e shall first prove an analoCue

of. 11(3.16).

Laiif 5., Asiume that 6' satisfies (2.6), (2.17) and that

(2.20) 16b 6 1.

b2

S(t ) iso0 (t ) a r e s o lu ti m s o f (1. 4 ) •I it uxx s , u x : S0  r e sp e c t i v e l l
.. x(o)= a (o)-b and - v~I . S• o)=,ol.=..ief I I v p vtl: • hen

(2.21) Ia(t) - ao(t)I < 12 l1/2

Pro2L UuinC the notation (2.8) and defining

(2.22) (t) : y=t) - y0(t)

where Yo, zo correspond (via (2.)) to aop, we obtain,

by (2*.9),

(2. OL t)- Vo(t)j r(o)=o

where

12.24) ( )yo(t) )i/ý' + (y(t))1/23J "1
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Integrating (2,23) and using the inzsquality (see (2.10))

(2.25) 1 (t)W <
i -- b

Vie get
(2.26) J.(t)l_ 41/11,_ t1/ exptl 6•l <.• 12,•c tl/

b

ifhere we made use of the inequalities (2.20) and 1i < 1. Using

th3 definitions (2.22), (2.3) and using (2,20), (2.10) we find

that

ls(t).So(t)I = fz(t)-Zok(t)J= < 12h bt(y(t))1/2+ (Yo(t))- 1/2 b-

and the proof of the lemma is comapleted.

We proceed to prove an analogue of 11(3.17),. In what follows

we rhall need the inequality

(2.27) < 5(t)f _ M

which follows from (2.18) on taking (-it.

Lemm 6. Under the aseaumptions of Lemma 5 the followln .negualitY

holds:

(2.20) Jslt)-,o(t)l _< 2-W

Proof. From the proof of Lena 5 we get

"A i (t) (0 1 < 1 (01 IY(t)'y I (t -o-(t 1

"IJ
bt" "/ t 1/2



In the last inequality we made use of, (2.20) and the inequality

IdJ< 1. UsinL (2.8) we conclude from (2.29) that

(2.30) 1(s(t)+ib) i(t) - (ao(t)+mb)io(t)I -<

'ie next find on using Lema 5 and (2.27) that

I (s(t)+rhb) i(t) -(s (t)+mb) i(t)j = I;(t)I Is(t)-s (t)I

No0
(2.3S1)

In teb last inequality we (ade use of (2L6).

1o2'inin4 (2.30) with (2.31) andW using Le 3 we get

0 ttt 11 t19b

and the proof of the larm is oompleted.

With the aid of Leums 34 we can now use the nethod of

Part II to provo that I is a contraction, and that the (unique)

solution can be continued as long as R = s(t) satisfies

(2.32) . 6 I• "> (b 2  II0I)s

provided 0, satisfies:

b
where B is a constant depending on ko, zo where k< ko, tmo. For

reasonably &=all k, m (such as k < 1, ta 4 1) ý is of order of

Saanitude of a few hundreds, We can also prove by the method of

Parat II that
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(2•34) 3(t) < A + Bt1/ (A•O, B'O)

"ie finally remark that in case • (b) $ b the condition

ii(2.*35,1 lira tl2(t)l <= Ah I b.,l1 (A>O)

tb

iv.i.4s uniqueness, as in Part II Here A is an appropriate

constaot depending on ko, m% where k < ko, m < mo

Raark. Theorem 3 can be generalized to general parabolic

equations with smooth ooesficients. Furthermore, it can be

extended to more general boundary conditions than (1.4) for which

aImas analogous to lemmas 3-6 can be proved. The boundary

condition (1.3) can also be replaced by more general boundary

conditions of the form u(s(t),t) = h(s(t),bk) where h is a

given function.

i

,/
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